IBPS PO : Quantitative Aptitude : Quadratic Equation

Quadratic Equation MCQs for IBPS PO Prelims

Directions (1-25): In the following questions, two equations numbered I and II are given. You have to solve both the equations and give answer.

निर्देश (1-25): निम्नलिखित प्रश्नों में, दो समीकरण I और II दिए गए हैं। आपको दोनों समीकरणों को हल करना है और उत्तर देना है।

(A) if x > y (यदि x > y)
(B) if x < y (यदि x < y)
(C) if x ≥ y (यदि x ≥ y)
(D) if x ≤ y (यदि x ≤ y)
(E) if x = y or the relationship cannot be established (यदि x = y या संबंध स्थापित नहीं किया जा सकता है)

  1. I. x² – 7x + 12 = 0
    II. y² – 9y + 20 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 7x + 12 = 0
    x² – 4x – 3x + 12 = 0
    x(x – 4) – 3(x – 4) = 0
    (x – 3)(x – 4) = 0
    Roots of x (x के मूल): 3, 4


    Equation II: y² – 9y + 20 = 0
    y² – 5y – 4y + 20 = 0
    y(y – 5) – 4(y – 5) = 0
    (y – 4)(y – 5) = 0
    Roots of y (y के मूल): 4, 5


    Comparison / तुलना:

    xyRelation / संबंध
    34x < y
    35x < y
    44x = y
    45x < y

    Here, x is always less than or equal to y (यहाँ, x हमेशा y से छोटा या उसके बराबर है).

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  2. I. 2x² + 11x + 14 = 0
    II. 4y² + 12y + 9 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 2x² + 11x + 14 = 0
    2x² + 7x + 4x + 14 = 0
    x(2x + 7) + 2(2x + 7) = 0
    (x + 2)(2x + 7) = 0
    Roots of x (x के मूल): -2, -3.5


    Equation II: 4y² + 12y + 9 = 0
    This is (2y + 3)² = 0
    2y + 3 = 0
    Roots of y (y के मूल): -1.5, -1.5


    Comparison / तुलना:

    xyRelation / संबंध
    -2-1.5x < y
    -3.5-1.5x < y

    In all cases, x is less than y (सभी मामलों में, x, y से छोटा है).

    Final Answer (अंतिम उत्तर): (B) x < y

  3. I. x² – 32 = 112
    II. y – √169 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 32 = 112
    x² = 112 + 32
    x² = 144
    x = ±√144
    Roots of x (x के मूल): +12, -12


    Equation II: y – √169 = 0
    y – 13 = 0
    Root of y (y का मूल): 13


    Comparison / तुलना:

    xyRelation / संबंध
    1213x < y
    -1213x < y

    In both cases, x is less than y (दोनों मामलों में, x, y से छोटा है).

    Final Answer (अंतिम उत्तर): (B) x < y

  4. I. x² + x – 12 = 0
    II. y² + 2y – 15 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + x – 12 = 0
    x² + 4x – 3x – 12 = 0
    x(x + 4) – 3(x + 4) = 0
    (x – 3)(x + 4) = 0
    Roots of x (x के मूल): 3, -4


    Equation II: y² + 2y – 15 = 0
    y² + 5y – 3y – 15 = 0
    y(y + 5) – 3(y + 5) = 0
    (y – 3)(y + 5) = 0
    Roots of y (y के मूल): 3, -5


    Comparison / तुलना:

    xyRelation / संबंध
    33x = y
    3-5x > y
    -43x < y
    -4-5x > y

    Since the relationship between x and y changes (कभी x>y, कभी x

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  5. I. 3x² – 10x + 8 = 0
    II. 2y² – 19y + 35 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 3x² – 10x + 8 = 0
    3x² – 6x – 4x + 8 = 0
    3x(x – 2) – 4(x – 2) = 0
    (3x – 4)(x – 2) = 0
    Roots of x (x के मूल): 2, 4/3 (or 1.33)


    Equation II: 2y² – 19y + 35 = 0
    2y² – 14y – 5y + 35 = 0
    2y(y – 7) – 5(y – 7) = 0
    (2y – 5)(y – 7) = 0
    Roots of y (y के मूल): 7, 5/2 (or 2.5)


    Comparison / तुलना:

    xyRelation / संबंध
    27x < y
    22.5x < y
    1.337x < y
    1.332.5x < y

    In all cases, x is less than y (सभी मामलों में, x, y से छोटा है).

    Final Answer (अंतिम उत्तर): (B) x < y

  6. I. x² = 81
    II. y² – 18y + 81 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² = 81
    x = ±√81
    Roots of x (x के मूल): 9, -9


    Equation II: y² – 18y + 81 = 0
    This is (y – 9)² = 0
    y – 9 = 0
    Root of y (y का मूल): 9


    Comparison / तुलना:

    xyRelation / संबंध
    99x = y
    -99x < y

    Here, x is either less than or equal to y (यहाँ, x, y से छोटा या उसके बराबर है).

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  7. I. 4x² + 20x + 25 = 0
    II. 2y² + 7y + 6 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 4x² + 20x + 25 = 0
    This is (2x + 5)² = 0
    2x + 5 = 0
    Root of x (x का मूल): -2.5


    Equation II: 2y² + 7y + 6 = 0
    2y² + 4y + 3y + 6 = 0
    2y(y + 2) + 3(y + 2) = 0
    (2y + 3)(y + 2) = 0
    Roots of y (y के मूल): -1.5, -2


    Comparison / तुलना:

    xyRelation / संबंध
    -2.5-1.5x < y
    -2.5-2x < y

    In both cases, x is less than y (दोनों मामलों में, x, y से छोटा है).

    Final Answer (अंतिम उत्तर): (B) x < y

  8. I. x² – 20x + 91 = 0
    II. y² – 32y + 247 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 20x + 91 = 0
    x² – 13x – 7x + 91 = 0
    x(x – 13) – 7(x – 13) = 0
    (x – 7)(x – 13) = 0
    Roots of x (x के मूल): 7, 13


    Equation II: y² – 32y + 247 = 0
    y² – 19y – 13y + 247 = 0
    y(y – 19) – 13(y – 19) = 0
    (y – 13)(y – 19) = 0
    Roots of y (y के मूल): 13, 19


    Comparison / तुलना:

    xyRelation / संबंध
    713x < y
    719x < y
    1313x = y
    1319x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  9. I. x² = 6x – 9
    II. 2y² + 13y + 21 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² = 6x – 9
    x² – 6x + 9 = 0
    (x – 3)² = 0
    Root of x (x का मूल): 3


    Equation II: 2y² + 13y + 21 = 0
    2y² + 7y + 6y + 21 = 0
    y(2y + 7) + 3(2y + 7) = 0
    (y + 3)(2y + 7) = 0
    Roots of y (y के मूल): -3, -3.5


    Comparison / तुलना:

    xyRelation / संबंध
    3-3x > y
    3-3.5x > y

    In both cases, x is greater than y.

    Final Answer (अंतिम उत्तर): (A) x > y

  10. I. 5x² + 29x + 20 = 0
    II. 25y² + 25y + 6 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 5x² + 29x + 20 = 0
    5x² + 25x + 4x + 20 = 0
    5x(x + 5) + 4(x + 5) = 0
    (5x + 4)(x + 5) = 0
    Roots of x (x के मूल): -5, -4/5 (or -0.8)


    Equation II: 25y² + 25y + 6 = 0
    25y² + 15y + 10y + 6 = 0
    5y(5y + 3) + 2(5y + 3) = 0
    (5y + 2)(5y + 3) = 0
    Roots of y (y के मूल): -2/5 (or -0.4), -3/5 (or -0.6)


    Comparison / तुलना:

    xyRelation / संबंध
    -5-0.4x < y
    -5-0.6x < y
    -0.8-0.4x < y
    -0.8-0.6x < y

    In all cases, x is less than y.

    Final Answer (अंतिम उत्तर): (B) x < y

  11. I. x² – 1 = 0
    II. y² + 4y + 3 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 1 = 0
    x² = 1
    Roots of x (x के मूल): 1, -1


    Equation II: y² + 4y + 3 = 0
    y² + 3y + y + 3 = 0
    y(y + 3) + 1(y + 3) = 0
    (y + 1)(y + 3) = 0
    Roots of y (y के मूल): -1, -3


    Comparison / तुलना:

    xyRelation / संबंध
    1-1x > y
    1-3x > y
    -1-1x = y
    -1-3x > y

    Here, x is always greater than or equal to y.

    Final Answer (अंतिम उत्तर): (C) x ≥ y

  12. I. 2x² – 7x + 3 = 0
    II. y² – 7y + 12 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 2x² – 7x + 3 = 0
    2x² – 6x – x + 3 = 0
    2x(x – 3) – 1(x – 3) = 0
    (2x – 1)(x – 3) = 0
    Roots of x (x के मूल): 3, 0.5


    Equation II: y² – 7y + 12 = 0
    y² – 4y – 3y + 12 = 0
    y(y – 4) – 3(y – 4) = 0
    (y – 3)(y – 4) = 0
    Roots of y (y के मूल): 3, 4


    Comparison / तुलना:

    xyRelation / संबंध
    33x = y
    34x < y
    0.53x < y
    0.54x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  13. I. x² + 12x + 35 = 0
    II. 5y² + 33y + 40 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 12x + 35 = 0
    x² + 7x + 5x + 35 = 0
    x(x + 7) + 5(x + 7) = 0
    (x + 5)(x + 7) = 0
    Roots of x (x के मूल): -5, -7


    Equation II: 5y² + 33y + 40 = 0
    5y² + 25y + 8y + 40 = 0
    5y(y + 5) + 8(y + 5) = 0
    (5y + 8)(y + 5) = 0
    Roots of y (y के मूल): -5, -8/5 (or -1.6)


    Comparison / तुलना:

    xyRelation / संबंध
    -5-5x = y
    -5-1.6x < y
    -7-5x < y
    -7-1.6x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  14. I. x = ³√2197
    II. 2y² – 54y + 364 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x = ³√2197
    Since 10³=1000 and 15³=3375, the root is between 10 and 15. The unit digit is 7, so the cube root’s unit digit must be 3. Thus, x=13.
    Root of x (x का मूल): 13


    Equation II: 2y² – 54y + 364 = 0
    Divide by 2: y² – 27y + 182 = 0
    y² – 14y – 13y + 182 = 0
    y(y – 14) – 13(y – 14) = 0
    (y – 13)(y – 14) = 0
    Roots of y (y के मूल): 13, 14


    Comparison / तुलना:

    xyRelation / संबंध
    1313x = y
    1314x < y

    Here, x is either less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  15. I. x² + 3x – 28 = 0
    II. y² – 11y + 28 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 3x – 28 = 0
    x² + 7x – 4x – 28 = 0
    x(x + 7) – 4(x + 7) = 0
    (x – 4)(x + 7) = 0
    Roots of x (x के मूल): 4, -7


    Equation II: y² – 11y + 28 = 0
    y² – 7y – 4y + 28 = 0
    y(y – 7) – 4(y – 7) = 0
    (y – 4)(y – 7) = 0
    Roots of y (y के मूल): 4, 7


    Comparison / तुलना:

    xyRelation / संबंध
    44x = y
    47x < y
    -74x < y
    -77x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  16. I. 6x² + 5x + 1 = 0
    II. 15y² + 8y + 1 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 6x² + 5x + 1 = 0
    6x² + 3x + 2x + 1 = 0
    3x(2x + 1) + 1(2x + 1) = 0
    (3x + 1)(2x + 1) = 0
    Roots of x (x के मूल): -1/3 (≈ -0.33), -1/2 (-0.5)


    Equation II: 15y² + 8y + 1 = 0
    15y² + 5y + 3y + 1 = 0
    5y(3y + 1) + 1(3y + 1) = 0
    (5y + 1)(3y + 1) = 0
    Roots of y (y के मूल): -1/5 (-0.2), -1/3 (≈ -0.33)


    Comparison / तुलना:

    xyRelation / संबंध
    -0.33-0.2x < y
    -0.33-0.33x = y
    -0.5-0.2x < y
    -0.5-0.33x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  17. I. x² + 5x – 6 = 0
    II. 2y² – 11y + 15 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 5x – 6 = 0
    x² + 6x – x – 6 = 0
    x(x + 6) – 1(x + 6) = 0
    (x – 1)(x + 6) = 0
    Roots of x (x के मूल): 1, -6


    Equation II: 2y² – 11y + 15 = 0
    2y² – 6y – 5y + 15 = 0
    2y(y – 3) – 5(y – 3) = 0
    (2y – 5)(y – 3) = 0
    Roots of y (y के मूल): 3, 2.5


    Comparison / तुलना:

    xyRelation / संबंध
    13x < y
    12.5x < y
    -63x < y
    -62.5x < y

    In all cases, x is less than y.

    Final Answer (अंतिम उत्तर): (B) x < y

  18. I. x² – 11x + 30 = 0
    II. y² + y – 30 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 11x + 30 = 0
    x² – 6x – 5x + 30 = 0
    x(x – 6) – 5(x – 6) = 0
    (x – 5)(x – 6) = 0
    Roots of x (x के मूल): 5, 6


    Equation II: y² + y – 30 = 0
    y² + 6y – 5y – 30 = 0
    y(y + 6) – 5(y + 6) = 0
    (y – 5)(y + 6) = 0
    Roots of y (y के मूल): 5, -6


    Comparison / तुलना:

    xyRelation / संबंध
    55x = y
    5-6x > y
    65x > y
    6-6x > y

    Here, x is always greater than or equal to y.

    Final Answer (अंतिम उत्तर): (C) x ≥ y

  19. I. 2x² – 15x + 28 = 0
    II. 2y² – 23y + 66 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 2x² – 15x + 28 = 0
    2x² – 8x – 7x + 28 = 0
    2x(x – 4) – 7(x – 4) = 0
    (2x – 7)(x – 4) = 0
    Roots of x (x के मूल): 4, 3.5


    Equation II: 2y² – 23y + 66 = 0
    2y² – 12y – 11y + 66 = 0
    2y(y – 6) – 11(y – 6) = 0
    (2y – 11)(y – 6) = 0
    Roots of y (y के मूल): 6, 5.5


    Comparison / तुलना:

    xyRelation / संबंध
    46x < y
    45.5x < y
    3.56x < y
    3.55.5x < y

    In all cases, x is less than y.

    Final Answer (अंतिम उत्तर): (B) x < y

  20. I. x² – 9x + 18 = 0
    II. 5y² – 22y + 24 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 9x + 18 = 0
    x² – 6x – 3x + 18 = 0
    x(x – 6) – 3(x – 6) = 0
    (x – 3)(x – 6) = 0
    Roots of x (x के मूल): 3, 6


    Equation II: 5y² – 22y + 24 = 0
    5y² – 12y – 10y + 24 = 0
    y(5y – 12) – 2(5y – 12) = 0
    (y – 2)(5y – 12) = 0
    Roots of y (y के मूल): 2, 12/5 (or 2.4)


    Comparison / तुलना:

    xyRelation / संबंध
    32x > y
    32.4x > y
    62x > y
    62.4x > y

    In all cases, x is greater than y.

    Final Answer (अंतिम उत्तर): (A) x > y

  21. I. x² – (1 + √2)x + √2 = 0
    II. y² – 3y + 2 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – (1 + √2)x + √2 = 0
    x² – x – √2x + √2 = 0
    x(x – 1) – √2(x – 1) = 0
    (x – √2)(x – 1) = 0
    Roots of x (x के मूल): 1, √2 (≈ 1.414)


    Equation II: y² – 3y + 2 = 0
    y² – 2y – y + 2 = 0
    y(y – 2) – 1(y – 2) = 0
    (y – 1)(y – 2) = 0
    Roots of y (y के मूल): 1, 2


    Comparison / तुलना:

    xyRelation / संबंध
    11x = y
    12x < y
    1.4141x > y
    1.4142x < y

    Since the relationship changes, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  22. I. 3x² + 4x + 1 = 0
    II. y² + 5y + 6 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 3x² + 4x + 1 = 0
    3x² + 3x + x + 1 = 0
    3x(x + 1) + 1(x + 1) = 0
    (3x + 1)(x + 1) = 0
    Roots of x (x के मूल): -1, -1/3 (≈ -0.33)


    Equation II: y² + 5y + 6 = 0
    y² + 3y + 2y + 6 = 0
    y(y + 3) + 2(y + 3) = 0
    (y + 2)(y + 3) = 0
    Roots of y (y के मूल): -2, -3


    Comparison / तुलना:

    xyRelation / संबंध
    -1-2x > y
    -1-3x > y
    -0.33-2x > y
    -0.33-3x > y

    In all cases, x is greater than y.

    Final Answer (अंतिम उत्तर): (A) x > y

  23. I. 2x² + 5x + 2 = 0
    II. 4y² – 1 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 2x² + 5x + 2 = 0
    2x² + 4x + x + 2 = 0
    2x(x + 2) + 1(x + 2) = 0
    (2x + 1)(x + 2) = 0
    Roots of x (x के मूल): -2, -0.5


    Equation II: 4y² – 1 = 0
    4y² = 1
    y² = 1/4
    y = ±√(1/4)
    Roots of y (y के मूल): 0.5, -0.5


    Comparison / तुलना:

    xyRelation / संबंध
    -20.5x < y
    -2-0.5x < y
    -0.50.5x < y
    -0.5-0.5x = y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  24. I. x² + 2x – 35 = 0
    II. y² + 15y + 56 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 2x – 35 = 0
    x² + 7x – 5x – 35 = 0
    x(x + 7) – 5(x + 7) = 0
    (x – 5)(x + 7) = 0
    Roots of x (x के मूल): 5, -7


    Equation II: y² + 15y + 56 = 0
    y² + 8y + 7y + 56 = 0
    y(y + 8) + 7(y + 8) = 0
    (y + 7)(y + 8) = 0
    Roots of y (y के मूल): -7, -8


    Comparison / तुलना:

    xyRelation / संबंध
    5-7x > y
    5-8x > y
    -7-7x = y
    -7-8x > y

    Here, x is always greater than or equal to y.

    Final Answer (अंतिम उत्तर): (C) x ≥ y

  25. I. 2x² – 9x + 10 = 0
    II. 2y² – 13y + 20 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 2x² – 9x + 10 = 0
    2x² – 5x – 4x + 10 = 0
    x(2x – 5) – 2(2x – 5) = 0
    (x – 2)(2x – 5) = 0
    Roots of x (x के मूल): 2, 2.5


    Equation II: 2y² – 13y + 20 = 0
    2y² – 8y – 5y + 20 = 0
    2y(y – 4) – 5(y – 4) = 0
    (2y – 5)(y – 4) = 0
    Roots of y (y के मूल): 4, 2.5


    Comparison / तुलना:

    xyRelation / संबंध
    24x < y
    22.5x < y
    2.54x < y
    2.52.5x = y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

Quadratic Equation MCQs for IBPS PO Prelims (Part 2)

Directions (26-50): In the following questions, two equations numbered I and II are given. You have to solve both the equations and give answer.

निर्देश (26-50): निम्नलिखित प्रश्नों में, दो समीकरण I और II दिए गए हैं। आपको दोनों समीकरणों को हल करना है और उत्तर देना है।

(A) if x > y (यदि x > y)
(B) if x < y (यदि x < y)
(C) if x ≥ y (यदि x ≥ y)
(D) if x ≤ y (यदि x ≤ y)
(E) if x = y or the relationship cannot be established (यदि x = y या संबंध स्थापित नहीं किया जा सकता है)

  1. I. 2x² – 13x + 21 = 0
    II. y² – 7y + 12 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 2x² – 13x + 21 = 0
    2x² – 7x – 6x + 21 = 0
    x(2x – 7) – 3(2x – 7) = 0
    (x – 3)(2x – 7) = 0
    Roots of x (x के मूल): 3, 3.5


    Equation II: y² – 7y + 12 = 0
    y² – 4y – 3y + 12 = 0
    y(y – 4) – 3(y – 4) = 0
    (y – 3)(y – 4) = 0
    Roots of y (y के मूल): 3, 4


    Comparison / तुलना:

    xyRelation / संबंध
    33x = y
    34x < y
    3.53x > y
    3.54x < y

    Since the relationship is not consistent, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  2. I. x² + x – 56 = 0
    II. y² – 17y + 72 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + x – 56 = 0
    x² + 8x – 7x – 56 = 0
    x(x + 8) – 7(x + 8) = 0
    (x – 7)(x + 8) = 0
    Roots of x (x के मूल): 7, -8


    Equation II: y² – 17y + 72 = 0
    y² – 9y – 8y + 72 = 0
    y(y – 9) – 8(y – 9) = 0
    (y – 8)(y – 9) = 0
    Roots of y (y के मूल): 8, 9


    Comparison / तुलना:

    xyRelation / संबंध
    78x < y
    79x < y
    -88x < y
    -89x < y

    In all cases, x is less than y.

    Final Answer (अंतिम उत्तर): (B) x < y

  3. I. x² = 196
    II. y = √196

    Detailed Solution / विस्तृत समाधान

    Equation I: x² = 196
    x = ±√196
    Roots of x (x के मूल): +14, -14


    Equation II: y = √196
    The square root symbol (√) implies only the positive root.
    Root of y (y का मूल): 14


    Comparison / तुलना:

    xyRelation / संबंध
    1414x = y
    -1414x < y

    Here, x is either less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  4. I. 3x² + 13x + 12 = 0
    II. 2y² + 9y + 10 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 3x² + 13x + 12 = 0
    3x² + 9x + 4x + 12 = 0
    3x(x + 3) + 4(x + 3) = 0
    (3x + 4)(x + 3) = 0
    Roots of x (x के मूल): -3, -4/3 (≈ -1.33)


    Equation II: 2y² + 9y + 10 = 0
    2y² + 5y + 4y + 10 = 0
    y(2y + 5) + 2(2y + 5) = 0
    (y + 2)(2y + 5) = 0
    Roots of y (y के मूल): -2, -5/2 (-2.5)


    Comparison / तुलना:

    xyRelation / संबंध
    -3-2x < y
    -3-2.5x < y
    -1.33-2x > y
    -1.33-2.5x > y

    Since the relationship is not consistent, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  5. I. x² – 22x + 120 = 0
    II. y² – 26y + 168 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 22x + 120 = 0
    x² – 12x – 10x + 120 = 0
    x(x – 12) – 10(x – 12) = 0
    (x – 10)(x – 12) = 0
    Roots of x (x के मूल): 10, 12


    Equation II: y² – 26y + 168 = 0
    y² – 14y – 12y + 168 = 0
    y(y – 14) – 12(y – 14) = 0
    (y – 12)(y – 14) = 0
    Roots of y (y के मूल): 12, 14


    Comparison / तुलना:

    xyRelation / संबंध
    1012x < y
    1014x < y
    1212x = y
    1214x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  6. I. 5x² – 18x + 9 = 0
    II. 3y² + 5y – 2 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 5x² – 18x + 9 = 0
    5x² – 15x – 3x + 9 = 0
    5x(x – 3) – 3(x – 3) = 0
    (5x – 3)(x – 3) = 0
    Roots of x (x के मूल): 3, 3/5 (or 0.6)


    Equation II: 3y² + 5y – 2 = 0
    3y² + 6y – y – 2 = 0
    3y(y + 2) – 1(y + 2) = 0
    (3y – 1)(y + 2) = 0
    Roots of y (y के मूल): -2, 1/3 (≈ 0.33)


    Comparison / तुलना:

    xyRelation / संबंध
    3-2x > y
    30.33x > y
    0.6-2x > y
    0.60.33x > y

    In all cases, x is greater than y.

    Final Answer (अंतिम उत्तर): (A) x > y

  7. I. x = ³√3375
    II. y² = 225

    Detailed Solution / विस्तृत समाधान

    Equation I: x = ³√3375
    x = 15
    Root of x (x का मूल): 15


    Equation II: y² = 225
    y = ±√225
    Roots of y (y के मूल): +15, -15


    Comparison / तुलना:

    xyRelation / संबंध
    1515x = y
    15-15x > y

    Here, x is always greater than or equal to y.

    Final Answer (अंतिम उत्तर): (C) x ≥ y

  8. I. x² – 8x + 15 = 0
    II. 2y² – 11y + 15 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 8x + 15 = 0
    (x – 3)(x – 5) = 0
    Roots of x (x के मूल): 3, 5


    Equation II: 2y² – 11y + 15 = 0
    2y² – 6y – 5y + 15 = 0
    2y(y – 3) – 5(y – 3) = 0
    (2y – 5)(y – 3) = 0
    Roots of y (y के मूल): 3, 5/2 (or 2.5)


    Comparison / तुलना:

    xyRelation / संबंध
    33x = y
    32.5x > y
    53x > y
    52.5x > y

    Here, x is always greater than or equal to y.

    Final Answer (अंतिम उत्तर): (C) x ≥ y

  9. I. x² + 7x – 18 = 0
    II. y² – 8y + 15 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 7x – 18 = 0
    x² + 9x – 2x – 18 = 0
    x(x + 9) – 2(x + 9) = 0
    (x – 2)(x + 9) = 0
    Roots of x (x के मूल): 2, -9


    Equation II: y² – 8y + 15 = 0
    (y – 3)(y – 5) = 0
    Roots of y (y के मूल): 3, 5


    Comparison / तुलना:

    xyRelation / संबंध
    23x < y
    25x < y
    -93x < y
    -95x < y

    In all cases, x is less than y.

    Final Answer (अंतिम उत्तर): (B) x < y

  10. I. x² – 4√3x + 9 = 0
    II. y² – 5y + 6 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 4√3x + 9 = 0
    x² – 3√3x – √3x + 9 = 0
    x(x – 3√3) – √3(x – 3√3) = 0
    (x – √3)(x – 3√3) = 0
    Roots of x (x के मूल): √3 (≈ 1.73), 3√3 (≈ 5.19)


    Equation II: y² – 5y + 6 = 0
    (y – 2)(y – 3) = 0
    Roots of y (y के मूल): 2, 3


    Comparison / तुलना:

    xyRelation / संबंध
    1.732x < y
    1.733x < y
    5.192x > y
    5.193x > y

    Since the relationship is not consistent, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  11. I. x² + 13x + 42 = 0
    II. y² + 16y + 63 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 13x + 42 = 0
    (x + 6)(x + 7) = 0
    Roots of x (x के मूल): -6, -7


    Equation II: y² + 16y + 63 = 0
    (y + 7)(y + 9) = 0
    Roots of y (y के मूल): -7, -9


    Comparison / तुलना:

    xyRelation / संबंध
    -6-7x > y
    -6-9x > y
    -7-7x = y
    -7-9x > y

    Here, x is always greater than or equal to y.

    Final Answer (अंतिम उत्तर): (C) x ≥ y

  12. I. x² – x – 42 = 0
    II. y² + y – 42 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – x – 42 = 0
    (x – 7)(x + 6) = 0
    Roots of x (x के मूल): 7, -6


    Equation II: y² + y – 42 = 0
    (y + 7)(y – 6) = 0
    Roots of y (y के मूल): -7, 6


    Comparison / तुलना:

    xyRelation / संबंध
    7-7x > y
    76x > y
    -6-7x > y
    -66x < y

    Since the relationship is not consistent, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  13. I. 12x² – 7x + 1 = 0
    II. 6y² – 7y + 2 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 12x² – 7x + 1 = 0
    12x² – 4x – 3x + 1 = 0
    4x(3x – 1) – 1(3x – 1) = 0
    (4x – 1)(3x – 1) = 0
    Roots of x (x के मूल): 1/4 (0.25), 1/3 (≈ 0.33)


    Equation II: 6y² – 7y + 2 = 0
    6y² – 4y – 3y + 2 = 0
    2y(3y – 2) – 1(3y – 2) = 0
    (2y – 1)(3y – 2) = 0
    Roots of y (y के मूल): 1/2 (0.5), 2/3 (≈ 0.66)


    Comparison / तुलना:

    xyRelation / संबंध
    0.250.5x < y
    0.250.66x < y
    0.330.5x < y
    0.330.66x < y

    In all cases, x is less than y.

    Final Answer (अंतिम उत्तर): (B) x < y

  14. I. x² + 24 = 10x
    II. 2y² + 48 = 20y

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 24 = 10x
    x² – 10x + 24 = 0
    (x – 4)(x – 6) = 0
    Roots of x (x के मूल): 4, 6


    Equation II: 2y² + 48 = 20y
    2y² – 20y + 48 = 0
    y² – 10y + 24 = 0 (Dividing by 2)
    (y – 4)(y – 6) = 0
    Roots of y (y के मूल): 4, 6


    Comparison / तुलना:
    The roots of x are 4, 6.
    The roots of y are 4, 6.
    The equations are identical. Therefore, x will always be equal to y for corresponding roots.

    Final Answer (अंतिम उत्तर): (E) x = y or the relationship cannot be established
    (Note: When roots are identical like {4, 6} and {4, 6}, the correct answer is ‘relationship cannot be established’ because 4 < 6. However, if both equations are identical, 'x=y' is also a valid interpretation in some contexts. 'E' is the safest choice as it covers both.)

  15. I. x² = 7x
    II. y² + 6y = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² = 7x
    x² – 7x = 0
    x(x – 7) = 0
    Roots of x (x के मूल): 0, 7 (Note: Do not cancel x from both sides, you will lose a root)


    Equation II: y² + 6y = 0
    y(y + 6) = 0
    Roots of y (y के मूल): 0, -6


    Comparison / तुलना:

    xyRelation / संबंध
    00x = y
    0-6x > y
    70x > y
    7-6x > y

    Here, x is always greater than or equal to y.

    Final Answer (अंतिम उत्तर): (C) x ≥ y

  16. I. 4x² – 4x – 3 = 0
    II. 4y² + 12y + 5 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 4x² – 4x – 3 = 0
    4x² – 6x + 2x – 3 = 0
    2x(2x – 3) + 1(2x – 3) = 0
    (2x + 1)(2x – 3) = 0
    Roots of x (x के मूल): -1/2 (-0.5), 3/2 (1.5)


    Equation II: 4y² + 12y + 5 = 0
    4y² + 10y + 2y + 5 = 0
    2y(2y + 5) + 1(2y + 5) = 0
    (2y + 1)(2y + 5) = 0
    Roots of y (y के मूल): -1/2 (-0.5), -5/2 (-2.5)


    Comparison / तुलना:

    xyRelation / संबंध
    -0.5-0.5x = y
    -0.5-2.5x > y
    1.5-0.5x > y
    1.5-2.5x > y

    Here, x is always greater than or equal to y.

    Final Answer (अंतिम उत्तर): (C) x ≥ y

  17. I. x² + 12x + 27 = 0
    II. y² + 7y + 10 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 12x + 27 = 0
    (x + 9)(x + 3) = 0
    Roots of x (x के मूल): -9, -3


    Equation II: y² + 7y + 10 = 0
    (y + 5)(y + 2) = 0
    Roots of y (y के मूल): -5, -2


    Comparison / तुलना:

    xyRelation / संबंध
    -9-5x < y
    -9-2x < y
    -3-5x > y
    -3-2x < y

    Since the relationship is not consistent, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  18. I. x = √625
    II. y = √676

    Detailed Solution / विस्तृत समाधान

    Equation I: x = √625
    x = 25 (Only the positive root)
    Root of x (x का मूल): 25


    Equation II: y = √676
    y = 26 (Only the positive root)
    Root of y (y का मूल): 26


    Comparison / तुलना:
    x = 25 and y = 26. Clearly, x < y.

    Final Answer (अंतिम उत्तर): (B) x < y

  19. I. x² – 30x + 221 = 0
    II. y² – 31y + 240 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 30x + 221 = 0
    (221 = 13 * 17; 13 + 17 = 30)
    x² – 17x – 13x + 221 = 0
    x(x – 17) – 13(x – 17) = 0
    (x – 13)(x – 17) = 0
    Roots of x (x के मूल): 13, 17


    Equation II: y² – 31y + 240 = 0
    (240 = 15 * 16; 15 + 16 = 31)
    y² – 16y – 15y + 240 = 0
    y(y – 16) – 15(y – 16) = 0
    (y – 15)(y – 16) = 0
    Roots of y (y के मूल): 15, 16


    Comparison / तुलना:

    xyRelation / संबंध
    1315x < y
    1316x < y
    1715x > y
    1716x > y

    Since the relationship is not consistent, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  20. I. x² + 4x – 12 = 0
    II. y² – 5y + 6 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 4x – 12 = 0
    (x + 6)(x – 2) = 0
    Roots of x (x के मूल): -6, 2


    Equation II: y² – 5y + 6 = 0
    (y – 2)(y – 3) = 0
    Roots of y (y के मूल): 2, 3


    Comparison / तुलना:

    xyRelation / संबंध
    -62x < y
    -63x < y
    22x = y
    23x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  21. I. 7x² + 16x + 4 = 0
    II. 3y² + 8y + 4 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 7x² + 16x + 4 = 0
    7x² + 14x + 2x + 4 = 0
    7x(x + 2) + 2(x + 2) = 0
    (7x + 2)(x + 2) = 0
    Roots of x (x के मूल): -2, -2/7 (≈ -0.28)


    Equation II: 3y² + 8y + 4 = 0
    3y² + 6y + 2y + 4 = 0
    3y(y + 2) + 2(y + 2) = 0
    (3y + 2)(y + 2) = 0
    Roots of y (y के मूल): -2, -2/3 (≈ -0.67)


    Comparison / तुलना:

    xyRelation / संबंध
    -2-2x = y
    -2-0.67x < y
    -0.28-2x > y
    -0.28-0.67x > y

    Since the relationship is not consistent, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  22. I. x² – 19x + 88 = 0
    II. y² – 12y + 35 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² – 19x + 88 = 0
    (x – 8)(x – 11) = 0
    Roots of x (x के मूल): 8, 11


    Equation II: y² – 12y + 35 = 0
    (y – 5)(y – 7) = 0
    Roots of y (y के मूल): 5, 7


    Comparison / तुलना:

    xyRelation / संबंध
    85x > y
    87x > y
    115x > y
    117x > y

    In all cases, x is greater than y.

    Final Answer (अंतिम उत्तर): (A) x > y

  23. I. 2x² + x – 1 = 0
    II. 6y² – 13y + 5 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 2x² + x – 1 = 0
    2x² + 2x – x – 1 = 0
    2x(x + 1) – 1(x + 1) = 0
    (2x – 1)(x + 1) = 0
    Roots of x (x के मूल): -1, 1/2 (0.5)


    Equation II: 6y² – 13y + 5 = 0
    6y² – 10y – 3y + 5 = 0
    2y(3y – 5) – 1(3y – 5) = 0
    (2y – 1)(3y – 5) = 0
    Roots of y (y के मूल): 1/2 (0.5), 5/3 (≈ 1.67)


    Comparison / तुलना:

    xyRelation / संबंध
    -10.5x < y
    -11.67x < y
    0.50.5x = y
    0.51.67x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

  24. I. x² + 10x + 21 = 0
    II. y² + 11y + 28 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: x² + 10x + 21 = 0
    (x + 3)(x + 7) = 0
    Roots of x (x के मूल): -3, -7


    Equation II: y² + 11y + 28 = 0
    (y + 4)(y + 7) = 0
    Roots of y (y के मूल): -4, -7


    Comparison / तुलना:

    xyRelation / संबंध
    -3-4x > y
    -3-7x > y
    -7-4x < y
    -7-7x = y

    Since the relationship is not consistent, it cannot be established.

    Final Answer (अंतिम उत्तर): (E) relationship cannot be established

  25. I. 15x² – 11x + 2 = 0
    II. 10y² – 9y + 2 = 0

    Detailed Solution / विस्तृत समाधान

    Equation I: 15x² – 11x + 2 = 0
    15x² – 6x – 5x + 2 = 0
    3x(5x – 2) – 1(5x – 2) = 0
    (3x – 1)(5x – 2) = 0
    Roots of x (x के मूल): 1/3 (≈ 0.33), 2/5 (0.4)


    Equation II: 10y² – 9y + 2 = 0
    10y² – 5y – 4y + 2 = 0
    5y(2y – 1) – 2(2y – 1) = 0
    (5y – 2)(2y – 1) = 0
    Roots of y (y के मूल): 2/5 (0.4), 1/2 (0.5)


    Comparison / तुलना:

    xyRelation / संबंध
    0.330.4x < y
    0.330.5x < y
    0.40.4x = y
    0.40.5x < y

    Here, x is always less than or equal to y.

    Final Answer (अंतिम उत्तर): (D) x ≤ y

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top