IBPS PO Quantitative Aptitude : Quadratic Equations & Quantity Comparison

IBPS PO Prelims – Quantitative Aptitude Practice Set

प्रश्न 1 / Question 1

I. x² – 7x + 12 = 0
II. y² – 9y + 20 = 0

  • A) x > y
  • B) x < y
  • C) x ≥ y
  • D) x ≤ y
  • E) x = y or the relationship cannot be established / x = y या संबंध स्थापित नहीं किया जा सकता है

विस्तृत समाधान / Detailed Solution

Correct Answer: E) x = y or the relationship cannot be established

From I:
x² – 7x + 12 = 0
x² – 4x – 3x + 12 = 0
x(x – 4) – 3(x – 4) = 0
(x – 3)(x – 4) = 0
So, x = 3, 4

From II:
y² – 9y + 20 = 0
y² – 5y – 4y + 20 = 0
y(y – 5) – 4(y – 5) = 0
(y – 4)(y – 5) = 0
So, y = 4, 5

Comparison:

xyRelation
34x < y
35x < y
44x = y
45x < y

Since the relationship is a mix of ‘<' and '=', the correct relation is x ≤ y. But let's recheck the options. Ah, I see a common mistake in my manual comparison. Let's re-compare: x = {3, 4}, y = {4, 5}. When x=4, y=4 -> x=y. When x=4, y=5 -> x x x x = 3, 5. II. y² – 7y + 12 = 0 -> y = 3, 4. Compare x={3,5} and y={3,4}. 3 vs 3: x=y. 3 vs 4: xy. 5 vs 4: x>y. Since we have both x>y and x

Corrected Question for a CND Result:
I. x² – 8x + 15 = 0
II. y² – 12y + 35 = 0

From I: x² – 8x + 15 = 0 -> (x-3)(x-5) = 0 -> x = 3, 5

From II: y² – 12y + 35 = 0 -> (y-5)(y-7) = 0 -> y = 5, 7

Comparison:
When x=3, y=5 -> x < y
When x=3, y=7 -> x < y
When x=5, y=5 -> x = y
When x=5, y=7 -> x < y
Combining these, we get x ≤ y. Let’s find a better CND case.

Final Attempt for a Clear CND Question 1:
I. x² + x – 12 = 0
II. y² + 2y – 15 = 0

From I: x² + x – 12 = 0 -> (x+4)(x-3) = 0 -> x = -4, 3

From II: y² + 2y – 15 = 0 -> (y+5)(y-3) = 0 -> y = -5, 3

Comparison:
When x=-4, y=-5 -> x > y
When x=-4, y=3 -> x < y
Since one comparison gives x>y and another gives x

Okay, I’ll use the original question I intended and correct my initial analysis.
Original Q1: I. x² – 7x + 12 = 0, II. y² – 9y + 20 = 0
Solution:
From I: x = 3, 4
From II: y = 4, 5
Comparison:
3 < 4, 3 < 5, 4 = 4, 4 < 5.
Overall relationship is x ≤ y. So option D is correct. I will use this.

Correct Answer: D) x ≤ y

प्रश्न 2 / Question 2

I. 2x² + 11x + 12 = 0
II. 5y² + 27y + 10 = 0

  • A) x > y
  • B) x < y
  • C) x ≥ y
  • D) x ≤ y
  • E) x = y or the relationship cannot be established / x = y या संबंध स्थापित नहीं किया जा सकता है

विस्तृत समाधान / Detailed Solution

Correct Answer: A) x > y

From I:
2x² + 11x + 12 = 0
2x² + 8x + 3x + 12 = 0
2x(x + 4) + 3(x + 4) = 0
(2x + 3)(x + 4) = 0
So, x = -3/2, -4 => x = -1.5, -4

From II:
5y² + 27y + 10 = 0
5y² + 25y + 2y + 10 = 0
5y(y + 5) + 2(y + 5) = 0
(5y + 2)(y + 5) = 0
So, y = -2/5, -5 => y = -0.4, -5

Comparison:

xyRelation
-1.5-0.4x < y
-1.5-5x > y
-4-0.4x < y
-4-5x > y

My manual solve gives CND. Let me recheck. 2x^2+11x+12=0. Roots are -8/2, -3/2 -> -4, -1.5. Correct. 5y^2+27y+10=0. Roots are -25/5, -2/5 -> -5, -0.4. Correct. Comparing x={-4, -1.5} and y={-5, -0.4}. -4 vs -5 -> x > y -4 vs -0.4 -> x < y The relationship cannot be established. I will change the question to have a clear answer. Let's use: I. x² - 5x + 6 = 0 -> x = 2, 3 II. y² + 5y + 6 = 0 -> y = -2, -3 Here, x is always positive, y is always negative. So x > y. This is a good question. I will use this.

Corrected Question 2:
I. x² – 5x + 6 = 0
II. y² + 5y + 6 = 0

Solution:
From I: x² – 5x + 6 = 0 -> (x-2)(x-3)=0 -> x = 2, 3
From II: y² + 5y + 6 = 0 -> (y+2)(y+3)=0 -> y = -2, -3
Comparison:
Both values of x (2, 3) are positive.
Both values of y (-2, -3) are negative.
A positive number is always greater than a negative number.
Therefore, x > y.

Correct Answer: A) x > y

प्रश्न 3 / Question 3

I. x³ = 1331
II. y² = 121

  • A) x > y
  • B) x < y
  • C) x ≥ y
  • D) x ≤ y
  • E) x = y or the relationship cannot be established

विस्तृत समाधान / Detailed Solution

Correct Answer: C) x ≥ y

From I:
x³ = 1331
x = ∛1331
So, x = 11 (Only one real root)

From II:
y² = 121
y = ±√121
So, y = 11, -11

Comparison:

xyRelation
1111x = y
11-11x > y

Combining the results, we get x ≥ y.

प्रश्न 4 / Question 4

I. 4x + 3y = 21
II. 3x + 4y = 14

  • A) x > y
  • B) x < y
  • C) x ≥ y
  • D) x ≤ y
  • E) x = y or the relationship cannot be established

विस्तृत समाधान / Detailed Solution

Correct Answer: A) x > y

We have a system of linear equations.

Eq I: 4x + 3y = 21 —(1)
Eq II: 3x + 4y = 14 —(2)

Multiply Eq (1) by 4 and Eq (2) by 3 to eliminate y:

16x + 12y = 84
9x + 12y = 42

Subtracting the second new equation from the first:

(16x – 9x) + (12y – 12y) = 84 – 42
7x = 42
x = 6

Substitute x = 6 into Eq (1):

4(6) + 3y = 21
24 + 3y = 21
3y = 21 – 24
3y = -3
y = -1

Comparison:
x = 6, y = -1. Clearly, x > y.

प्रश्न 5 / Question 5

I. x² + x – 56 = 0
II. y² – 17y + 72 = 0

  • A) x > y
  • B) x < y
  • C) x ≥ y
  • D) x ≤ y
  • E) x = y or the relationship cannot be established

विस्तृत समाधान / Detailed Solution

Correct Answer: E) x = y or the relationship cannot be established

From I:
x² + x – 56 = 0
x² + 8x – 7x – 56 = 0
x(x + 8) – 7(x + 8) = 0
(x – 7)(x + 8) = 0
So, x = 7, -8

From II:
y² – 17y + 72 = 0
y² – 8y – 9y + 72 = 0
y(y – 8) – 9(y – 8) = 0
(y – 9)(y – 8) = 0
So, y = 9, 8

Comparison:

xyRelation
79x < y
78x < y
-89x < y
-88x < y

In all cases, x < y. So the correct option is B. Let me fix the question to make CND.
Corrected Question 5:
I. x² – x – 42 = 0
II. y² + y – 30 = 0

Solution:
From I: x² – x – 42 = 0 -> (x-7)(x+6)=0 -> x = 7, -6
From II: y² + y – 30 = 0 -> (y+6)(y-5)=0 -> y = -6, 5
Comparison:
When x=7, y=-6 -> x > y
When x=7, y=5 -> x > y
When x=-6, y=-6 -> x = y
When x=-6, y=5 -> x < y
Since we have both x > y and x < y, the relationship cannot be established. This is a good CND question.

Correct Answer: E) x = y or the relationship cannot be established

Quantity Comparison

Instructions: In each of the following questions, two quantities (I and II) are given. You have to find the value of both quantities and compare them. / निम्नलिखित प्रत्येक प्रश्न में, दो मात्राएँ (I और II) दी गई हैं। आपको दोनों मात्राओं का मान ज्ञात करना है और उनकी तुलना करनी है।


प्रश्न 6 / Question 6

मात्रा I: एक वस्तु को 15% की हानि पर बेचा जाता है। यदि इसे 60 रुपये अधिक में बेचा जाता, तो 5% का लाभ होता। वस्तु का क्रय मूल्य।
Quantity I: An article is sold at a loss of 15%. If it were sold for Rs. 60 more, there would have been a profit of 5%. The cost price of the article.

मात्रा II: 1500 रुपये।
Quantity II: Rs. 1500.

  • A) Quantity I > Quantity II
  • B) Quantity I < Quantity II
  • C) Quantity I ≥ Quantity II
  • D) Quantity I ≤ Quantity II
  • E) Quantity I = Quantity II or the relationship cannot be established

विस्तृत समाधान / Detailed Solution

Correct Answer: B) Quantity I < Quantity II

For Quantity I:
Let the Cost Price (CP) be ‘C’.
The difference in selling price corresponds to the change from a 15% loss to a 5% profit.
The total percentage change is 15% (to cover the loss) + 5% (to make a profit) = 20%.
This 20% of the CP is equal to Rs. 60.
So, 0.20 * CP = 60
CP = 60 / 0.20
CP = 300.
So, Quantity I = Rs. 300.

For Quantity II:
The value is given as Rs. 1500.

Comparison:
Quantity I (300) < Quantity II (1500).

प्रश्न 7 / Question 7

I. x² = 64
II. y³ = 512

  • A) x > y
  • B) x < y
  • C) x ≥ y
  • D) x ≤ y
  • E) x = y or the relationship cannot be established

विस्तृत समाधान / Detailed Solution

Correct Answer: E) x = y or the relationship cannot be established

From I:
x² = 64
x = ±√64
So, x = 8, -8

From II:
y³ = 512
y = ∛512
So, y = 8

Comparison:

xyRelation
88x = y
-88x < y

Since we have both x = y and x < y, the relationship cannot be established.

प्रश्न 8 / Question 8

I. 3x² – 13x + 14 = 0
II. y² – 4y + 4 = 0

  • A) x > y
  • B) x < y
  • C) x ≥ y
  • D) x ≤ y
  • E) x = y or the relationship cannot be established

विस्तृत समाधान / Detailed Solution

Correct Answer: E) x = y or the relationship cannot be established

From I:
3x² – 13x + 14 = 0
3x² – 6x – 7x + 14 = 0
3x(x – 2) – 7(x – 2) = 0
(3x – 7)(x – 2) = 0
So, x = 7/3, 2 => x ≈ 2.33, 2

From II:
y² – 4y + 4 = 0
(y – 2)² = 0
So, y = 2

Comparison:

xyRelation
2.332x > y
22x = y

Combining the results, we get x ≥ y. Let me correct my option. The answer is C. Wait, I will make it CND to be tricky.
Corrected Question 8:
I. x² – 9x + 18 = 0 -> x = 3, 6
II. 2y² – 15y + 28 = 0 -> 2y^2 – 8y – 7y + 28 = 0 -> (2y-7)(y-4)=0 -> y = 3.5, 4

Solution:
From I: x = 3, 6
From II: y = 3.5, 4
Comparison:
3 vs 3.5 -> x < y
3 vs 4 -> x < y
6 vs 3.5 -> x > y
6 vs 4 -> x > y
Since we have both x < y and x > y, the relationship cannot be established.

Correct Answer: E) x = y or the relationship cannot be established

प्रश्न 25 / Question 25

मात्रा I: एक ट्रेन 12 मिनट में 18 किमी की दूरी तय करती है। इसकी गति (किमी/घंटा में)।
Quantity I: A train covers a distance of 18 km in 12 minutes. Its speed (in km/hr).

मात्रा II: एक कार 5 घंटे में 400 किमी की दूरी तय करती है। इसकी गति (किमी/घंटा में)।
Quantity II: A car covers a distance of 400 km in 5 hours. Its speed (in km/hr).

  • A) Quantity I > Quantity II
  • B) Quantity I < Quantity II
  • C) Quantity I ≥ Quantity II
  • D) Quantity I ≤ Quantity II
  • E) Quantity I = Quantity II or the relationship cannot be established

विस्तृत समाधान / Detailed Solution

Correct Answer: A) Quantity I > Quantity II

For Quantity I:
Distance = 18 km
Time = 12 minutes = 12/60 hours = 0.2 hours
Speed = Distance / Time
Speed = 18 / 0.2 = 90 km/hr.
So, Quantity I = 90 km/hr.

For Quantity II:
Distance = 400 km
Time = 5 hours
Speed = Distance / Time
Speed = 400 / 5 = 80 km/hr.
So, Quantity II = 80 km/hr.

Comparison:
Quantity I (90 km/hr) > Quantity II (80 km/hr).

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top